Skip to content
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Upcoming Events
    • Webinars
    • Meetups
    • News
    • Blog
  • The company
    • About us
    • Careers
Menu
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Upcoming Events
    • Webinars
    • Meetups
    • News
    • Blog
  • The company
    • About us
    • Careers
Contact

Airways segmentation with Deep Learning

Image processing is a fundamental technique in the quest to identify physical pathologies. Lung cancer is today one of the main causes of death in the world among both men and women, with an impressive rate of about five million deadly cases per year. The survival rate is strictly related to the stage in which the disease is diagnosed. Precise medical imaging and analysis enable early detection of the lung cancer, help determine its exact size and location and significantly improve the diagnosis and treatment. For example, a detailed 3d map of the airways may be used to plan and navigate a bronchoscopy procedure, to obtain biopsy samples and to perform other clinical interventions. This article deals with a fast, stable, robust and accurate airways segmentation solution using deep learning.


.

Automatic Airways Segmentation with Deep Learning

One client requested our help to automatically segment images of the pulmonary system. This lung segmentation should include blood vessels, the lower respiratory tract and pulmonary vasculature.
Our scientists wrote software built on advanced segmentation techniques brought to light with the Deep Learning revolution which affects also the area of medical segmentation: this software offers an efficient segmentation of the airways and pulmonary vasculature, replacing previous classical computer vision techniques, which allowed only for a semi-automated airways segmentation, requiring several iterations to find the initial seed point. Using deep learning, we have now a fully automated solution, able to automatically detect all airways, with no need for external intervention.
Airways Segmentation

Thanks to more sophisticated deep learning techniques and more powerful processing units, user does not need to refine the results: using GPUs, more accurate results are provided by our software in a lapse of time which is much quicker than before. In order to do this, neural networks go through complicate processes to detect and identify features and points of interest using the context to understand what needs to be found in the image. To this effect, computations are complex and newly available GPUs are key to have this done in a faster time. The basic architecture of the algorithm is quite simple: a series of filters, the mathematics of which are all identical. They gain speed by being processed in parallel by the multiple processors found in the GPU.

Airways segmentation
Some of the airways trees correctly segmented by RSIP Vision’s software

Better monitoring is direly needed today to reduce the dramatically high mortality rate from lung pathologies. The airways segmentation solution which RSIP Vision delivers is a major contribution to help the medical profession giving earlier and better answers to major lung diseases.

Share

Share on linkedin
Share on twitter
Share on facebook

Main Field

Pulmonology

RSIP Vision’s image processing expertise in medical imaging is currently used in numerous projects, including many applications of computer vision in pulmonology. We are very proud of our contribution to lung medicine: feature detection, lung segmentation and countless other works in the pulmonary imaging field enabled our clients to give the means to physicians to save lives by giving faster and more appropriate treatment to all kind of lung diseases. You can read below about some of our breakthrough developments in Pulmonology and Bronchoscopy.

View Pulmonology

Categories

  • Pulmonology, RSIP Vision Learns

Related Content

Pulmonary embolism

Detecting Pulmonary Embolism from CT Scan

Lung vasculature segmentation

Lung tumors

Lung Tumor Segmentation

Lung Nodules Segmentation

Lung fissures

Lung Fissures Segmentation

Visible lung cancer on CT scan of chest and abdomen

Chest CT Scan Analysis with Deep Learning

Pulmonary embolism

Detecting Pulmonary Embolism from CT Scan

Lung vasculature segmentation

Lung tumors

Lung Tumor Segmentation

Lung Nodules Segmentation

Lung fissures

Lung Fissures Segmentation

Visible lung cancer on CT scan of chest and abdomen

Chest CT Scan Analysis with Deep Learning

Show all

RSIP Vision

Field-tested software solutions and custom R&D, to power your next medical products with innovative AI and image analysis capabilities.

Read more about us

Get in touch

Please fill the following form and our experts will be happy to reply to you soon

Recent News

IBD Scoring – Clario, GI Reviewers and RSIP Vision Team Up

RSIP Neph Announces a Revolutionary Intra-op Solution for Partial Nephrectomy Surgeries

Announcement – RSIP Vision Presents Successful Preliminary Results from Clinical Study of 2D-to-3D Knee Bones Reconstruction

Announcement – New Urological AI Tool for 3D Reconstruction of the Ureter

All news
Upcoming Events
Stay informed for our next events
Subscribe to Our Magazines

Subscribe now and receive the Computer Vision News Magazine every month to your mailbox

 
Subscribe for free
Follow us
Linkedin Twitter Facebook Youtube

contact@rsipvision.com

Terms of Use

Privacy Policy

© All rights reserved to RSIP Vision 2023

Created by Shmulik

  • Our Work
    • title-1
      • Ophthalmology
      • Uncategorized
      • Ophthalmology
      • Pulmonology
      • Cardiology
      • Orthopedics
    • Title-2
      • Orthopedics
  • Success Stories
  • Insights
  • The company