Skip to content
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Upcoming Events
    • Webinars
    • Meetups
    • News
    • Blog
  • The company
    • About us
    • Careers
Menu
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Upcoming Events
    • Webinars
    • Meetups
    • News
    • Blog
  • The company
    • About us
    • Careers
Contact

Tag: Cysts

Tissue Sparing in urology

AI-Assisted Tissue Sparing in Urology

Tissue sparing is a common practice during surgeries. This approach aims to remove as little as possible of the surrounding tissue during a procedure. Studies

Read More
Cyst detection

Finding Cysts, Part Five: Final Detection

The goal is to automatically detect the appearance of Cystoid Macular Edema (CME) in Optical Coherence Tomography (OCT) images. The deep learning technique used, Convolutional Neural Networks, takes as an input patches of pixels from within the retina. These patches were generated from previous segmentation of retinal images. A further segmentation of the retina is performed using an image processing algorithm called SLIC. Every superpixel thus generated, after being labeled as in the OCT scan, is fed into the neural network to detect the cyst.

Read More
Layer segmentation of the retina

Finding Cysts Part Three: Layer Segmentation

A series of five articles on our Cysts Detection project using deep learning and Convolutional Neural Networks: 1) our cyst detection method; 2) the cyst denoising process; 3) the retinal layer segmentation; 4) the automatical seed-detection; 5) the final detection of the cysts. Our method is exceptionally successful at finding the cysts themselves and most of their area. Remarkable results are achieved even when using relatively small datasets in the training process.

Read More

Automatic Detection of Macular Cysts

A series of five articles on our Cysts Detection project using deep learning and Convolutional Neural Networks: 1) our cyst detection method; 2) the cyst denoising process; 3) the retinal layer segmentation; 4) the automatical seed-detection; 5) the final detection of the cysts. Our method is exceptionally successful at finding the cysts themselves and most of their area. Remarkable results are achieved even when using relatively small datasets in the training process.

Read More

Get in touch

Please fill the following form and our experts will be happy to reply to you soon

Recent News

IBD Scoring – Clario, GI Reviewers and RSIP Vision Team Up

RSIP Neph Announces a Revolutionary Intra-op Solution for Partial Nephrectomy Surgeries

Announcement – RSIP Vision Presents Successful Preliminary Results from Clinical Study of 2D-to-3D Knee Bones Reconstruction

Announcement – New Urological AI Tool for 3D Reconstruction of the Ureter

All news
Upcoming Events
Stay informed for our next events
Subscribe to Our Magazines

Subscribe now and receive the Computer Vision News Magazine every month to your mailbox

 
Subscribe for free
Follow us
Linkedin Twitter Facebook Youtube

contact@rsipvision.com

Terms of Use

Privacy Policy

© All rights reserved to RSIP Vision 2023

Created by Shmulik

  • Our Work
    • title-1
      • Ophthalmology
      • Uncategorized
      • Ophthalmology
      • Pulmonology
      • Cardiology
      • Orthopedics
    • Title-2
      • Orthopedics
  • Success Stories
  • Insights
  • The company