Skip to content
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Events and Webinars
    • News
    • Blog
  • The company
    • About us
    • Careers
Menu
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Events and Webinars
    • News
    • Blog
  • The company
    • About us
    • Careers
Contact

AI algorithms for Surgical Video Analysis

Surgical video analysis involves using artificial intelligence and machine learning algorithms to analyze surgical video footage. This practice, which includes both intraoperative and postoperative video analysis, has numerous benefits for patients, for surgeons and for other medical professionals as well.

Surgical Video Analysis

We spoke with Asher Patinkin, one of the most knowledgeable experts in this field at RSIP Vision. He provided a full review of the most advanced AI and Computer Vision algorithms that can be used for surgical video analysis. Depending on the specific requirements, Deep Learning algorithms, such as convolutional neural networks (CNNs), RNNs can be trained on large datasets of surgical video footage to perform tasks such as object detection, tracking, segmentation, and activity recognition, as follows:

Object Detection – Asher points out that Algorithms like YOLO, Faster R-CNN, SSD (Single Shot Detector) and RetinaNet help identify specific objects or instruments within surgical video footage, such as surgical tools, implants, or anatomical structures.

Tracking – Here we distinguish between traditional algorithms (like Kalman Filter, Mean Shift, Particle Filter) and more recent Deep Learning algorithms, which follow the movement of objects or instruments within the surgical video footage over time, allowing for analysis of the trajectory and motion of these objects.

Pose Estimation – Pose estimation and Mask R-CNN allow to estimate the position and orientation of instruments or anatomical structures within the surgical field, allowing for analysis of surgical technique and instrument placement.

Segmentation – Asher says that U-Net, Mask R-CNN, FCN separate objects or instruments within the surgical field from the surrounding environment, allowing for more precise analysis of their movements and interactions.

Activity Recognition – It is Asher’s opinion that Transformers and 3D CNN enable to identify and classify specific surgical actions or tasks performed within the surgical field, allowing for analysis of surgical workflow and technique.

RSIP Vision’s AI experts and engineers have both the knowledge and the experience to respond to your specific needs in Video Analysis of surgeries and all medical procedures with AI.

Surgical Video Analysis screenshot

Share

Share on linkedin
Share on twitter
Share on facebook

Main Field

Surgical RSIP

View Surgical RSIP

Categories

  • blog, RSIP Vision Learns, Surgical RSIP

Related Content

Next Generation Intra-op Navigation

Next Generation Intra-op Navigation

Show all

RSIP Vision

Field-tested software solutions and custom R&D, to power your next medical products with innovative AI and image analysis capabilities.

Read more about us

Get in touch

Please fill the following form and our experts will be happy to reply to you soon

Recent News

Announcement – XPlan.ai Confirms Premier Precision in Peer-Reviewed Clinical Study of its 2D-to-3D Knee Reconstruction Solution

IBD Scoring – Clario, GI Reviewers and RSIP Vision Team Up

RSIP Neph Announces a Revolutionary Intra-op Solution for Partial Nephrectomy Surgeries

Announcement – XPlan.ai by RSIP Vision Presents Successful Preliminary Results from Clinical Study of it’s XPlan 2D-to-3D Knee Bones Reconstruction

All news
Upcoming Events
Stay informed for our next events
Subscribe to Our Magazines

Subscribe now and receive the Computer Vision News Magazine every month to your mailbox

 
Subscribe for free
Follow us
Linkedin Twitter Facebook Youtube

contact@rsipvision.com

Terms of Use

Privacy Policy

© All rights reserved to RSIP Vision 2023

Created by Shmulik

  • Our Work
    • title-1
      • Ophthalmology
      • Uncategorized
      • Ophthalmology
      • Pulmonology
      • Cardiology
      • Orthopedics
    • Title-2
      • Orthopedics
  • Success Stories
  • Insights
  • The company