Skip to content
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Events and Webinars
    • News
    • Blog
  • The company
    • About us
    • Careers
Menu
  • Our Work
    • Fields
      • Cardiology
      • ENT
      • Gastro
      • Orthopedics
      • Ophthalmology
      • Pulmonology
      • Surgical
      • Urology
      • Other
    • Modalities
      • Endoscopy
      • Medical Segmentation
      • Microscopy
      • Ultrasound
  • Success Stories
  • Insights
    • Magazine
    • Events and Webinars
    • News
    • Blog
  • The company
    • About us
    • Careers
Contact

Brain tumor segmentation

More than 20,000 adults in the United States (with a higher incidence on men vs. women) are diagnosed every year with primary cancerous tumors of the brain and the spinal cord. It is estimated that more than 15,000 die from this disease yearly. An additional 4,000 children and teens are diagnosed with a brain or central nervous system tumor. In addition to primary tumors, the brain can also suffer from secondary tumors or brain metastases. The most common cancers that spread from remote areas to the brain are lung, breast, melanoma, kidney, nasal cavity and colon cancers.
The task of detecting the localization and extension of the tumor falls on brain tumor image processing, by the way of segmenting the tumor in the image. Segmentation of anatomical structure is a challenging assignment. The variability in target structures limits the use of a-prior knowledge which would restrict the expected geometry of the object. In particular, anatomical structure with unexpected shape, like soft tissue tumors, challenges automatic segmentation and in most parts requires human supervision to complete segmentation.
Brain tumor segmentation
Brain tumor segmentation
Three-dimensional segmentation of brain tumor has an important clinical relevance for the estimation of the volume and spread of the tumor. The first step in segmentation is to construct a probability map localizing the tumor. A binary fuzzy classification of voxels based on intensity histogram into tumor and background classes is employed for the task.
Using the probabilistic maps, we can employ deformable models – like active contours (snakes) – to delineate the tumor. Active contours are parametric description of a closed curve, made to converge to regions of the image corresponding to edges. Thus, the probability maps are used to initialize and guide the convergence of the active contour to the expected tumor boundaries.
Convergence of level set active contours is the core of successful brain tumor segmentation. A minimization of an energy functional defining the active contour is made in high dimensional domain, regarding which the object boundaries correspond to the zero level energy. A correct definition of the active contour is an art by itself. This is specifically true about the energy functional and the image values it relies upon.
At RSIP Vision we have already employed active contour segmentation in medical applications for a full decade. The expertise we have accumulated allows us to develop cutting edge solutions for segmentation in low signal to noise ratio and in complex environments as well.

Share

Share on linkedin
Share on twitter
Share on facebook

Related Content

Improved PCNL

Improved PCNL with Computer Vision

Super-Resolution in OCT images

Super-Resolution in OCT images

AI-Assisted Prostate cancer diagnosis

AI-Assisted Prostate Cancer Diagnosis

Surgical Video Analysis

AI algorithms for Surgical Video Analysis

2D-to-3D joint reconstruction from X-ray

XPlan.AI by RSIP Vision – New AI-based 2D-to-3D Joint Reconstruction from X-ray Images

Prostate Guidance

Intra-op Prostate Guidance by RSIP Vision

Improved PCNL

Improved PCNL with Computer Vision

Super-Resolution in OCT images

Super-Resolution in OCT images

AI-Assisted Prostate cancer diagnosis

AI-Assisted Prostate Cancer Diagnosis

Surgical Video Analysis

AI algorithms for Surgical Video Analysis

2D-to-3D joint reconstruction from X-ray

XPlan.AI by RSIP Vision – New AI-based 2D-to-3D Joint Reconstruction from X-ray Images

Prostate Guidance

Intra-op Prostate Guidance by RSIP Vision

Show all

RSIP Vision

Field-tested software solutions and custom R&D, to power your next medical products with innovative AI and image analysis capabilities.

Read more about us

Get in touch

Please fill the following form and our experts will be happy to reply to you soon

Recent News

Announcement – XPlan.ai Confirms Premier Precision in Peer-Reviewed Clinical Study of its 2D-to-3D Knee Reconstruction Solution

IBD Scoring – Clario, GI Reviewers and RSIP Vision Team Up

RSIP Neph Announces a Revolutionary Intra-op Solution for Partial Nephrectomy Surgeries

Announcement – XPlan.ai by RSIP Vision Presents Successful Preliminary Results from Clinical Study of it’s XPlan 2D-to-3D Knee Bones Reconstruction

All news
Upcoming Events
Stay informed for our next events
Subscribe to Our Magazines

Subscribe now and receive the Computer Vision News Magazine every month to your mailbox

 
Subscribe for free
Follow us
Linkedin Twitter Facebook Youtube

contact@rsipvision.com

Terms of Use

Privacy Policy

© All rights reserved to RSIP Vision 2023

Created by Shmulik

  • Our Work
    • title-1
      • Ophthalmology
      • Uncategorized
      • Ophthalmology
      • Pulmonology
      • Cardiology
      • Orthopedics
    • Title-2
      • Orthopedics
  • Success Stories
  • Insights
  • The company